

Thermochimica Acta 398 (2003) 39-46

thermochimica acta

www.elsevier.com/locate/tca

# Densities and excess volumes of benzene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene at 298.15 K

René D. Peralta<sup>a,\*</sup>, Ramiro Infante<sup>a</sup>, Gladis Cortez<sup>a</sup>, Arturo Cisneros<sup>a</sup>, Jaime Wisniak<sup>b</sup>

<sup>a</sup> Centro de Investigación en Química Aplicada, Saltillo 25000, Coahuila, Mexico <sup>b</sup> Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

Received 14 March 2002; received in revised form 16 July 2002; accepted 16 July 2002

## Abstract

Densities of the binary systems of benzene with ethyl acrylate, butyl acrylate, methyl methacrylate, and styrene have been measured as a function of the composition, at 298.15 K and atmospheric pressure, using an Anton Paar model DMA 5000 oscillating U-tube densitometer. The calculated excess volumes were correlated with the Redlich–Kister equation and with a series of Legendre polynomials. The excess volumes are positive for all the systems reported here. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Densities; Excess volumes; Monomers; Acrylates; Benzene

# 1. Introduction

The mixing of different compounds gives rise to properties such as volumes, enthalpies and entropies of mixing, which reflect the extent of the deviations from non-ideality. Excess thermodynamic properties of mixtures correspond to the difference between the actual property and the property if the system behaves ideally and thus are useful in the study of molecular interactions and arrangements.

This work is part of our program to provide data for the characterization of the molecular interactions between solvents and industrially important monomers, in particular the influence of the chemical structure of the solute in the systems under consideration.

Sastry and Dave measured the excess volumes, isentropic compressibilities, and dielectric behavior of

\* Corresponding author.

15 binary mixtures of alkyl (methyl, ethyl, and butyl) methacrylate with hexane, heptane, carbon tetrachloride, chlorobenzene, and o-dichlorobenzene at 308.15 K and found that with aliphatic hydrocarbons the results were controlled by dispersing interactions while with chlorinated solvents the controlling factors were specific interactions (O–Cl and n– $\pi$  types) [1,2]. Sastry and Valand also measured the excess volumes of mixtures of alkyl (methyl, ethyl, and butyl) acrylates in several alkanols at 298.15 and 308.15 K, and found that they were always positive. These results were explained on the basis of non-specific interactions between the components [3]. Sastry et al. [4] measured the excess volumes of methyl methacrylate (MMA) and aromatic hydrocarbons such as benzene, toluene, ethylbenzene, and (o, m, p)xylenes, at 298.15 and 303.15 K and found that except for benzene all presented positive excess volumes. The excess volume curve for the system benzene + MMA showed a non-symmetric behavior with a

E-mail address: rene@polimex.ciqa.mx (R.D. Peralta).

Table 1 Purity and densities of pure components at 298.15 K

| Component      | Purity  | Density (g cm <sup>-3</sup> ) |                         |  |  |
|----------------|---------|-------------------------------|-------------------------|--|--|
|                | (mass%) | Measured                      | Literature 0.87370 [10] |  |  |
| Benzene (1)    | 99.9    | 0.873598                      |                         |  |  |
| BA (2)         | 99+     | 0.893666                      | 0.8941 [3]              |  |  |
| EA (3)         | 99      | 0.925930                      | 0.9163 [3]              |  |  |
| MMA (4)        | 99      | 0.937669                      | 0.93766 [11]            |  |  |
| Styrene (5) 99 |         | 0.901972                      | 0.9016 [10]             |  |  |

maximum of  $V^{\rm E} \approx 0.19 \, {\rm cm}^3 \, {\rm mol}^{-1}$  at about  $x_{\rm MMA} = 0.40$ .

No literature data are available on the excess volumes of the systems with alkyl acrylates analyzed in this work.

## 2. Experimental

### 2.1. Materials

Benzene (HPLC grade, 99.9 + mass%) was purchased from Baker, ethyl acrylate, EA (99 + mass%), butyl acrylate, BA (99+mass%), MMA (99+mass%), and styrene (99 mass%), were purchased from Aldrich. EA, BA, and MMA were vacuum distilled previous to use to eliminate the stabilizer (about 0.002 mass% of hydroquinone monomethyl ether). Styrene, containing 10–15 ppm of 4-*tert*-butylcatechol as stabilizer, was not distilled to avoid polymerization but was degassed by freezing and heating. The purity of the solvents was further ascertained by comparing their densities at 298.15 K with the values reported in the literature (Table 1).

#### 2.2. Density measurements

The density of the samples was measured with an Anton Paar model DMA 5000 oscillating U-tube densitometer, provided with automatic viscosity correction, two integrated Pt 100 thermometers (DKD traceable), and a stated accuracy of  $5 \times 10^{-6}$  g cm<sup>-3</sup>. The temperature in the cell was regulated to  $\pm 0.001$  K with a solid-state thermostat. The apparatus was calibrated once a day with dry air and bi-distilled freshly degassed water. All liquids were boiled or heated to remove dissolved air. Solutions of different compositions were prepared by mass in a 10 cm<sup>3</sup> rubber-stoppered vial to prevent evaporation, using a Mettler AG 204 balance accurate to  $\pm 10^{-4}$  g. To minimize the errors in composition, the heavier component was charged first and the sample kept in ice water. Accuracy in the mole fraction is  $5 \times 10^{-5}$ , of the density (duplicate) measurement  $\pm 2 \times 10^{-6}$  g cm<sup>-3</sup>, and of the temperature  $\pm 0.002$  K.

Proper safety measures were taken when handling all the materials, particularly benzene, a possible carcinogenic material.

## 3. Results and discussion

At least 21 density measurements were performed (with repetition) for each binary system, in the full concentration range  $(0 \le x \le 1)$ .

The excess volumes  $V^{E}$  of the solutions of molar composition *x* were calculated from the densities of the pure liquids and their mixtures according to the following equation:

$$V^{\rm E} = \left[\frac{xM_1 + (1-x)M_2}{\rho}\right] - \left[\frac{xM_1}{\rho_1} + \frac{(1-x)M_2}{\rho_2}\right]$$
(1)

where  $\rho$ ,  $\rho_1$ , and  $\rho_2$  are the densities of the solution and pure components 1 and 2, respectively, and  $M_1$ and  $M_2$  the molar masses of the pure components. The corresponding values of  $\rho$  and  $V^E$  are reported in Tables 2–5 and Fig. 1. The values of  $V^E$  were correlated with composition using the following two procedures:

(a) The Redlich–Kister expression [5]:

$$V^{\rm E} = x_1 x_2 \sum_{k=0}^{N} A_k (x_1 - x_2)^k$$
(2)

where the  $A_k$ 's are the adjustable parameters of the model.

The Redlich–Kister regressor is very powerful and frequently used to correlate vapor–liquid equilibrium data and excess properties. Notwithstanding, it suffers from the important drawback that

| $x_1$  | $\rho ~(\mathrm{gcm^{-3}})$ | $V (\times 10^{-2} \mathrm{cm}^3 \mathrm{mol}^{-1})$ | $V^{\rm E}$ (×10 <sup>2</sup> cm <sup>3</sup> mol <sup>-1</sup> ) | $\delta V^{\rm E} \ (\times 10^3  {\rm cm}^3  {\rm mol}^{-1})$ |  |
|--------|-----------------------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|--|
| 0.0000 | 0.893938                    | 1.4338                                               | 0.0000                                                            | 0                                                              |  |
| 0.0561 | 0.893158                    | 1.4036                                               | 0.8421                                                            | 1                                                              |  |
| 0.1014 | 0.892512                    | 1.3792                                               | 1.3785                                                            | -1                                                             |  |
| 0.1497 | 0.891789                    | 1.3532                                               | 2.0803                                                            | $^{-2}$                                                        |  |
| 0.2002 | 0.890981                    | 1.3260                                               | 3.1414                                                            | 0                                                              |  |
| 0.2511 | 0.890123                    | 1.2987                                               | 4.3419                                                            | 2                                                              |  |
| 0.2994 | 0.889291                    | 1.2727                                               | 5.2597                                                            | 2                                                              |  |
| 0.3499 | 0.888392                    | 1.2455                                               | 6.0964                                                            | 1                                                              |  |
| 0.4001 | 0.887465                    | 1.2185                                               | 6.8329                                                            | -2                                                             |  |
| 0.4502 | 0.886505                    | 1.1915                                               | 7.4969                                                            | -4                                                             |  |
| 0.5007 | 0.885454                    | 1.1644                                               | 8.6544                                                            | 0                                                              |  |
| 0.5509 | 0.884405                    | 1.1373                                               | 9.2308                                                            | 0                                                              |  |
| 0.6005 | 0.883317                    | 1.1106                                               | 9.8072                                                            | 2                                                              |  |
| 0.6498 | 0.882227                    | 1.0840                                               | 9.8318                                                            |                                                                |  |
| 0.7001 | 0.881098                    | 1.0568                                               | 9.3927                                                            | -1                                                             |  |
| 0.7498 | 0.879918                    | 1.0299                                               | 8.9987                                                            | 0                                                              |  |
| 0.8003 | 0.878707                    | 1.0026                                               | 8.0293                                                            | 0                                                              |  |
| 0.8500 | 0.877475                    | 0.9756                                               | 6.7637                                                            | 0                                                              |  |
| 0.9001 | 0.876223                    | 0.9484                                               | 4.8522                                                            | -1                                                             |  |
| 0.9499 | 0.874924                    | 0.9213                                               | 2.7458                                                            | 0                                                              |  |
| 1.0000 | 0.873598                    | 0.8940                                               | 0.0000                                                            | 0                                                              |  |

Experimental densities, volumes, calculated excess volumes, and deviations  $\delta V^{\rm E}$  for the system benzene (1) + BA (2) at 298.15 K

Table 2

Table 3 Experimental densities, volumes, calculated excess volumes, and deviations  $\delta V^{\rm E}$  for the system benzene (1) + EA (3) at 298.15 K

| <i>x</i> <sub>1</sub> | $\rho (\text{g cm}^{-3})$ | $V(\times 10^{-2}{\rm cm}^3{ m mol}^{-1})$ | $V^{\rm E}$ (×10 <sup>2</sup> cm <sup>3</sup> mol <sup>-1</sup> ) | $\delta V^{\rm E} \ (\times 10^3  {\rm cm}^3  {\rm mol}^{-1})^{\rm a}$ |
|-----------------------|---------------------------|--------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|
| 0.0000                | 0.915930                  | 10.931                                     | 0                                                                 | 0                                                                      |
| 0.0253                | 0.915005                  | 10.881                                     | 0.5266                                                            | -2                                                                     |
| 0.0506                | 0.914072                  | 10.831                                     | 1.0830                                                            | -2                                                                     |
| 0.1000                | 0.912218                  | 10.734                                     | 2.1630                                                            | -3                                                                     |
| 0.1538                | 0.910159                  | 10.628                                     | 3.3996                                                            | 3                                                                      |
| 0.2019                | 0.908298                  | 10.533                                     | 4.3524                                                            | -2                                                                     |
| 0.2501                | 0.906397                  | 10.438                                     | 5.2864                                                            | -3                                                                     |
| 0.3003                | 0.904384                  | 10.339                                     | 6.2452                                                            | 5                                                                      |
| 0.3496                | 0.902390                  | 10.242                                     | 6.9628                                                            | 2                                                                      |
| 0.4003                | 0.900310                  | 10.142                                     | 7.5749                                                            | 0                                                                      |
| 0.4500                | 0.898243                  | 10.043                                     | 8.0210                                                            | -2                                                                     |
| 0.5012                | 0.896081                  | 9.941                                      | 8.3519                                                            | 2                                                                      |
| 0.5502                | 0.893990                  | 9.844                                      | 8.4465                                                            | 1                                                                      |
| 0.6002                | 0.891840                  | 9.744                                      | 8.2782                                                            | -6                                                                     |
| 0.6498                | 0.889670                  | 9.645                                      | 8.0624                                                            | 2                                                                      |
| 0.7001                | 0.887449                  | 9.545                                      | 7.5247                                                            | -1                                                                     |
| 0.7498                | 0.885223                  | 9.445                                      | 6.8488                                                            | 3                                                                      |
| 0.8001                | 0.882953                  | 9.344                                      | 5.8419                                                            | -3                                                                     |
| 0.8500                | 0.880662                  | 9.243                                      | 4.6985                                                            | -2                                                                     |
| 0.9002                | 0.878324                  | 9.142                                      | 3.3854                                                            | 5                                                                      |
| 0.9500                | 0.875981                  | 9.041                                      | 1.7951                                                            | 2                                                                      |
| 0.9751                | 0.874795                  | 8.990                                      | 0.8732                                                            | -3                                                                     |
| 1.0000                | 0.873598                  | 8.940                                      | 0                                                                 | 0                                                                      |

$${}^{a}\,\delta V^{\rm E} = V^{\rm E}_{\rm expt} - V^{\rm E}_{\rm calc}.$$

42

Table 4

Experimental densities, volumes, calculated excess volumes, and deviations  $\delta V^{\rm E}$  for the system benzene (1) + MMA (4) at 298.15 K

| <i>x</i> <sub>1</sub> | $\rho  (\mathrm{g}\mathrm{cm}^{-3})$ | $V (\times 10^{-2} \mathrm{cm}^3 \mathrm{mol}^{-1})$ | $V^{\rm E} \; (\times 10^2  {\rm cm}^3  {\rm mol}^{-1})$ | $\delta V^{\rm E} \ (\times 10^3  {\rm cm}^3  {\rm mol}^{-1})^{\rm a}$ |  |
|-----------------------|--------------------------------------|------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|--|
| 0                     | 0.937608                             | 1.0678                                               | 0                                                        | 0                                                                      |  |
| 0.0250                | 0.936121                             | 1.0636                                               | 1.5885                                                   | 1                                                                      |  |
| 0.0502                | 0.934656                             | 1.0594                                               | 2.7431                                                   | -2                                                                     |  |
| 0.1007                | 0.931623                             | 1.0509                                               | 5.6072                                                   | 0                                                                      |  |
| 0.1500                | 0.928664                             | 1.0425                                               | 7.8901                                                   | 1                                                                      |  |
| 0.1999                | 0.925639                             | 1.0341                                               | 10.0187                                                  | 2                                                                      |  |
| 0.2503                | 0.922595                             | 1.0255                                               | 11.4459                                                  | -2                                                                     |  |
| 0.3007                | 0.919473                             | 1.0169                                               | 13.1309                                                  | 0                                                                      |  |
| 0.3502                | 0.916423                             | 1.0084                                               | 14.1232                                                  | -2                                                                     |  |
| 0.4000                | 0.913267                             | 0.9998                                               | 15.4069                                                  | 2                                                                      |  |
| 0.4508                | 0.910063                             | 0.9911                                               | 16.0382                                                  | 1                                                                      |  |
| 0.5003                | 0.906908                             | 0.9825                                               | 16.3547                                                  | 1                                                                      |  |
| 0.5504                | 0.903696                             | 0.9738                                               | 16.2850                                                  | -1                                                                     |  |
| 0.6004                | 0.900452                             | 0.9651                                               | 16.0046                                                  | -1                                                                     |  |
| 0.6502                | 0.897175                             | 0.9564                                               | 15.5519                                                  | 0                                                                      |  |
| 0.7001                | 0.893879                             | 0.9476                                               | 14.6529                                                  | 0                                                                      |  |
| 0.7500                | 0.890556                             | 0.9388                                               | 13.3882                                                  | 1                                                                      |  |
| 0.7999                | 0.887200                             | 0.9300                                               | 11.7608                                                  | 1                                                                      |  |
| 0.8499                | 0.883845                             | 0.9210                                               | 9.3850                                                   | -1                                                                     |  |
| 0.9000                | 0.880446                             | 0.9121                                               | 6.7781                                                   | -1                                                                     |  |
| 0.9499                | 0.877033                             | 0.9031                                               | 3.7060                                                   | 0                                                                      |  |
| 0.9753                | 0.875288                             | 0.8985                                               | 1.9163                                                   | 0                                                                      |  |
| 1                     | 0.873598                             | 0.8940                                               | 0                                                        | 0                                                                      |  |

$${}^{a} \delta V^{E} = V^{E}_{expt} - V^{E}_{calc}$$

the values of the adjustable parameters change as the number of terms in the series is increased.

(b) A series of Legendre polynomials  $L_k(x_1)$ :

$$V^{\rm E} = x_1 x_2 \sum_{k=0}^{N} a_k L_k(x_1)$$
(3)

which for the first three terms (k = 0, 1, 2) is

$$V^{\rm E} = x_1 x_2 [a_0 + a_1 (2x_1 - 1) + a_2 (6x_1^2 - 6x_1 + 1)]$$
(4)

Legendre polynomials belong to the category of orthogonal functions such as Fourier, Bessel, and



Fig. 1. Excess volumes at 298.15 K: (\*) benzene + MMA; (●) benzene + EA; (◆) benzene + BA; (▲) benzene + styrene.

| $\frac{1}{1} + \frac{1}{1} + \frac{1}$ |                                      |                                                      |                                                                   |                                                                        |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|
| $x_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\rho  (\mathrm{g}\mathrm{cm}^{-3})$ | $V (\times 10^{-2} \mathrm{cm}^3 \mathrm{mol}^{-1})$ | $V^{\rm E}$ (×10 <sup>2</sup> cm <sup>3</sup> mol <sup>-1</sup> ) | $\delta V^{\rm E} \ (\times 10^3  {\rm cm}^3  {\rm mol}^{-1})^{\rm a}$ |  |  |  |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.901972                             | 1.1547                                               | 0                                                                 | 0                                                                      |  |  |  |
| 0.0254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.901363                             | 1.1481                                               | 0.6117                                                            | 0                                                                      |  |  |  |
| 0.0519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.900708                             | 1.1413                                               | 1.3847                                                            | 2                                                                      |  |  |  |
| 0.1002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.899532                             | 1.1288                                               | 2.3619                                                            | 0                                                                      |  |  |  |
| 0.1503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.898287                             | 1.1158                                               | 3.3177                                                            | -1                                                                     |  |  |  |
| 0.2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.896993                             | 1.1028                                               | 4.3681                                                            | -1                                                                     |  |  |  |
| 0.2499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.895722                             | 1.0901                                               | 5.2399                                                            | -1                                                                     |  |  |  |
| 0.3001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.894385                             | 1.0771                                               | 6.2052                                                            | 1                                                                      |  |  |  |
| 0.3501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.893049                             | 1.0641                                               | 6.8206                                                            | 0                                                                      |  |  |  |
| 0.4001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.891693                             | 1.0511                                               | 7.2530                                                            | -1                                                                     |  |  |  |
| 0.4519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.890248                             | 1.0377                                               | 7.7845                                                            | 1                                                                      |  |  |  |
| 0.5002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.888896                             | 1.0251                                               | 7.9194                                                            | 0                                                                      |  |  |  |
| 0.5506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.887450                             | 1.0120                                               | 8.0728                                                            | 0                                                                      |  |  |  |
| 0.6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.886017                             | 0.9991                                               | 7.9878                                                            | 0                                                                      |  |  |  |
| 0.6502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.884537                             | 0.9860                                               | 7.7174                                                            | 0                                                                      |  |  |  |
| 0.7005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.883030                             | 0.9728                                               | 7.2783                                                            | 0                                                                      |  |  |  |
| 0.7502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.881517                             | 0.9598                                               | 6.6660                                                            | 0                                                                      |  |  |  |
| 0.7997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.880001                             | 0.9468                                               | 5.7369                                                            | -1                                                                     |  |  |  |
| 0.8506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.878396                             | 0.9334                                               | 4.7774                                                            | 0                                                                      |  |  |  |
| 0.8998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.876827                             | 0.9205                                               | 3.5557                                                            | 1                                                                      |  |  |  |
| 0.9499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.875216                             | 0.9073                                               | 1.9713                                                            | 1                                                                      |  |  |  |
| 0.9751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.874400                             | 0.9006                                               | 1.0646                                                            | 1                                                                      |  |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.873598                             | 0.8940                                               | 0                                                                 | 0                                                                      |  |  |  |

Experimental densities, volumes, calculated excess volumes, and deviations  $\delta V^{\rm E}$  for the system benzene (1) + styrene (5) at 298.15 K

$${}^{a} \delta V^{\rm E} = V^{\rm E}_{\rm expt} - V^{\rm E}_{\rm calc}$$

Table 5

Chebyshev, which have the important characteristic that for a continuous series of observations (infinite) the values of the coefficients do not change as the number of terms in the series is increased. This is an important property because if a physical explanation can be assigned to one of its coefficients, its value remains constant. For the case of discrete measurements, such as determination of volumes of mixing, the values of the coefficients will vary, but slightly.

In addition, as shown in Table 6, the series of Legendre polynomials have the important characteristic that the structure of its first four terms is the same as that of the first four terms of the Redlich–Kister expression.

Eqs. (2) and (3) were fitted using a least-squares optimization procedure, with all points weighted equally and minimizing the following objective function (OF):

$$OF = \sum_{l}^{N} (V_{i,expt}^{E} - V_{i,calc}^{E})^{2}$$
(5)

where *N* is the number of observations. The values of the different adjustable parameters,  $A_k$  and  $a_k$ , are reported in Tables 7 and 8 for different values of *k*,

Table 6 Expressions for Legendre polynomials and the Redlich–Kister expression

| Polynomial order, k | $L_k$ (see Eq. (3))                                                   | Redlich-Kister (see Eq. (2))                                          |
|---------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
| 0                   | 1                                                                     | 1                                                                     |
| 1                   | $2x_1 - 1$                                                            | $2x_1 - 1$                                                            |
| 2                   | $6(x_1^2 - x_1 + \frac{1}{6})$                                        | $4(x_1^2 - x_1 + \frac{1}{4})$                                        |
| 3                   | $20(x_1^3 - \frac{3}{2}x_1^2 + \frac{3}{5}x_1 - \frac{1}{20})$        | $8(x_1^3 - \frac{3}{2}x_1^2 + \frac{3}{4}x_1 - \frac{1}{8})$          |
| 4                   | $70(x_1^4 - 2x_1^3 + \frac{9}{7}x_1^2 - \frac{2}{7}x + \frac{1}{70})$ | $16(x_1^4 - 2x_1^3 + \frac{3}{2}x_1^2 - \frac{1}{2}x + \frac{1}{16})$ |

| Coefficients $A_k$ (Eq. (2)), standard deviation s (Eq. (6)), Durbin–Watson statistic d, $(V^E)_{x=0.5}$ , and $\bar{V}_i^{E,\infty}$ at 298.15 K |                 |                   |                   |                   |                 |      |                                                               |                                                                       |                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|-------------------|-----------------|------|---------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|
| System                                                                                                                                            | $A_0 \times 10$ | $A_1 \times 10^2$ | $A_2 \times 10^3$ | $A_3 \times 10^2$ | $s \times 10^3$ | da   | $(V^{\rm E})_{x=0.5}$<br>(cm <sup>3</sup> mol <sup>-1</sup> ) | $ar{V}_1^{\mathrm{E},\infty}$<br>(cm <sup>3</sup> mol <sup>-1</sup> ) | $\frac{\bar{V}_2^{\text{E},\infty}}{(\text{cm}^3 \text{mol}^{-1})}$ |
| 1 + 2                                                                                                                                             | 3.447           | 27.30             | 15.95             | -4.74             | 1.6             | 1.43 | 0.0862                                                        | 0.1351                                                                | 0.5863                                                              |
| 1 + 3                                                                                                                                             | 3.317           | 8.01              | -39.7             |                   | 0.3             | 2.45 | 0.0833                                                        | 0.2086                                                                | 0.3776                                                              |
| 1 + 4                                                                                                                                             | 6.517           | 9.15              | 55.1              |                   | 1.1             | 2.37 | 0.1629                                                        | 0.6153                                                                | 0.7983                                                              |
| 1 + 5                                                                                                                                             | 3.180           | 6.60              | 7.27              | 2.496             | 0.7             | 1.73 | 0.0795                                                        | 0.2344                                                                | 0.4162                                                              |
|                                                                                                                                                   |                 |                   |                   | _                 |                 |      |                                                               |                                                                       |                                                                     |

<sup>a</sup>  $d = \sum_{u=2}^{N} (e_u - e_{u-1})^2 / \sum_{u=1}^{N} e_u^2, e_u = V_{u,\text{calc}}^{\text{E}} - V_{u,\text{expt}}^{\text{E}}.$ 

together with the pertinent statistics. The standard deviation s was calculated as

$$s = \left[\frac{\sum (V_{i,\text{expt}}^{\text{E}} - V_{i,\text{calc}}^{\text{E}})^2}{N - k}\right]^{1/2}$$
(6)

where k is the number of adjustable parameters. The statistical significance of adding one or more terms after the third was examined using a  $\chi^2$ -based test, coupled to the requirement that the residues be randomly distributed, as suggested by Wisniak and Polishuk [6]. It was not deemed necessary to perform a step-wise regression.

The values of the function  $V^{\rm E}/x_1x_2$  at infinite dilution represent the values of the partial excess volume at infinite dilution,  $\bar{V}_i^{\rm E,\infty}$  [7] and can be calculated from the adjustable parameters as follows:

(a) Redlich-Kister:

$$\bar{V}_1^{\mathrm{E},\infty} = A_0 - A_1 + A_2 - \dots = \bar{V}_1 - V_1^0$$
 (7)

$$\bar{V}_2^{\mathrm{E},\infty} = A_0 + A_1 + A_2 + \dots = \bar{V}_2 - V_2^0$$
 (8)

(b) Legendre:

$$\bar{V}_1^{\mathrm{E},\infty} = a_0 - a_1 + a_2 - \dots = \bar{V}_2 - V_2^0$$
 (9)

$$\bar{V}_2^{\mathrm{E},\infty} = a_0 + a_1 + a_2 + \dots = \bar{V}_2 - V_2^0$$
 (10)



Fig. 2. Residual distribution plot for the system benzene + BA according to the fit given in Table 6.

where  $V_i^0$  is the molar volume of pure component *i*. The pertinent values of  $\bar{V}_i^{\text{E},\infty}$  are also shown in Tables 6 and 7. Eqs. (7) and (8) or (9) and (10) yield the same values of  $\bar{V}_i^{\text{E},\infty}$ .

Fig. 2 shows a typical distribution of the residuals, which is random as declared by the Durbin–Watson statistic.

Inspection of the results of Tables 2–5 and Fig. 1 indicates that the excess volumes for the four systems

Table 8 Coefficients  $a_k$  (Eq. (3)), standard deviation s (Eq. (6)), Durbin–Watson statistic d,  $(V^E)_{x=0.5}$ , and  $\bar{V}_i^{E,\infty}$  at 298.15 K

| System | $a_0 \times 10$ | $a_1 \times 10^2$ | $a_2 \times 10^2$ | $a_3 \times 10^2$ | $s \times 10^3$ | ďa   | $(V^{\rm E})_{x=0.5}$<br>(cm <sup>3</sup> mol <sup>-1</sup> ) | $ar{V}_1^{\mathrm{E},\infty}$<br>(cm <sup>3</sup> mol <sup>-1</sup> ) | $\bar{V}_2^{\mathrm{E},\infty}$<br>(cm <sup>3</sup> mol <sup>-1</sup> ) |
|--------|-----------------|-------------------|-------------------|-------------------|-----------------|------|---------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|
| 1 + 2  | 3.500           | 24.46             | 1.063             | -1.896            | 1.6             | 1.43 | 0.0863                                                        | 0.1351                                                                | 0.5863                                                                  |
| 1 + 3  | 3.199           | 8.01              | -2.65             |                   | 0.3             | 2.45 | 0.0833                                                        | 0.2134                                                                | 0.3736                                                                  |
| 1 + 4  | 6.700           | 9.15              | 3.67              |                   | 1.1             | 2.37 | 0.1630                                                        | 0.6153                                                                | 0.7983                                                                  |
| 1+5    | 3.204           | 8.092             | 0.485             | 0.999             | 0.8             | 1.73 | 0.0795                                                        | 0.2344                                                                | 0.4162                                                                  |

<sup>a</sup> 
$$d = \sum_{u=2}^{N} (e_u - e_{u-1})^2 / \sum_{u=1}^{N} e_u^2, e_u = V_{u,\text{calc}}^{\text{E}} - V_{u,\text{expt}}^{\text{E}}$$

Table 7



Fig. 3. Comparison of the results for the system MMA + toluene:  $(\bullet)$  this work;  $(\bigcirc)$  Sastry et al. [4].

studied here are positive for the whole composition range. As shown in Fig. 3, the results for the system benzene + MMA obtained in this work are very similar to those of Sastry et al. [4]. The difference may be attributed to the fact that Sastry et al. used MMA as purchased, with the stabilizer, and here the monomer was freshly distilled before the measurements. In addition, the small difference between the two sets of results may also be due to the difference in the experimental equipment (pyknometer against oscillating U-tube densitometer), and the background error.

As regards to the symmetry of the excess function, Fig. 1 shows that the function  $V^{\rm E}(x)$  is symmetric only for the system benzene + MMA indicating that the maximum specific interaction occurs at about equimolar composition, with  $(V^{\rm E})_{x=0.5} \approx 0.165 \,\mathrm{cm^3 \, mol^{-1}}$ . For the other three systems the minimum of the curve deviates slightly to the right of x = 0.5, pointing to a small amount of self-association of the solute (monomer).

The sign and intensity of the volume changes that take place during mixing is the result of several effects that operate in the same or opposite directions. The most important ones are: (a) a positive one due to the break-up of the structure of one or both components (originating from non-chemical or chemical interactions such as hydrogen bonding or complexforming interactions such as self-association) and (b) a negative one due to physical interactions (for example, heteroassociation) or geometric fitting of one component into the second, leading to a more compact packing (interstitial accommodation). The second contribution becomes more and more important with increasing sphericicity of the solute molecule and higher molar volume of the solvent [9].

Structurally benzene may be considered the homomorph of cyclohexane, aprotic, and non-polar. Interactions between a polar component and an aromatic compound such as benzene is considered to occur via complex formation between the two species, or  $n-\pi$ interaction [8].

The magnitude and sign of  $V^{\rm E}$  is a reflection of the type of interactions taking place in the mixture. This is very well exhibited by the mixtures studied here, with the maximum value of  $V^{\rm E}$  ranging from about +0.08 to +0.17 cm<sup>3</sup> mol<sup>-1</sup>. The V<sup>E</sup> curves are positive, their relative intensity depending on the nature of the solute (monomer) and the solvent. The overall magnitude of  $V^{\rm E}$  is a result of the effect of breaking the ester's dipole-dipole association being larger than a net packing effect contributed by structural effects arising from interstitial accommodation.  $n-\pi$  interactions between an aromatic hydrocarbon (such as benzene and styrene) and an ester are much stronger than those between a cyclic hydrocarbon (such as cyclohexane) and an ester. As shown in Fig. 1, the system benzene + styrene presents the smallest expansion effect. This fact is a result of the inductive effect of the vinyl group in styrene enhancing the electron density of its ring and the electrostatic interaction with the benzene ring. This packing effect decreases the break-up of the structure of the components.

Anyhow, it is clear that there is a substantial difference in packing of benzene with the esters and with styrene. The value of  $(V^{\rm E})_{x=0.5}$  for the latter is about two times smaller than that for MMA.

#### References

- [1] N.V. Sastry, P.N. Dave, Int. J. Thermophys. 17 (1996) 1289– 1304.
- [2] N.V. Sastry, P.N. Dave, Proc. Indian Acad. Sci. (Chem. Sci.) 109 (1997) 211–220.
- [3] N.V. Sastry, M.K. Valand, Phys. Chem. Liq. 3 (2000) 61-72.
- [4] N.V. Sastry, S.R. Patel, M.C. Patel, J. Chem. Thermodyn. 3 (1999) 797.
- [5] O. Redlich, A.T. Kister, Ind. Eng. Chem. 4 (1948) 345-351.
- [6] J. Wisniak, A. Polishuk, Fluid Phase Equilibria 16 (1999) 61–82.

- [7] H.C. Van Ness, M.M. Abbott, Classical Thermodynamics of Nonelectrolyte Solutions, McGraw-Hill, New York, 1982.
- [8] S.C. Sharma, R. Kaur, J. Singh, J. Chem. Thermodyn. 2 (1992) 1171–1174.
- [9] R. Tanaka, M. Adachi, J. Chem. Thermodyn. 23 (1991) 1023– 1027.
- [10] J.A. Riddick, W.B. Bunger, T.K. Sakano, Organic Solvents, Techniques of Chemistry, vol. II, 4th ed., Wiley/Interscience, New York, 1991.
- [11] L. Beichen, S.E.M. Hamam, B.C.-Y. Lu, J. Chem. Thermodyn. 18 (1986) 1043–1046.